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Abstract

A novel formulation based upon continuum electrostatics to compute the electrostatic potential in and around two bio-
molecules in a solvent with ionic strength is presented. Many, if not all, current methods rely on the non-linear Poisson–
Boltzmann equation to include ionic strength. The present formulation, however, describes ionic strength through the
inclusion of explicit ions, which considerably extends its applicability and validity range. The method relies on the bound-
ary element method and results in two very similar coupled integral equations valid on the dielectric boundaries of two
molecules, respectively. The method can be employed to estimate the total electrostatic energy of two protein molecules
at a given distance and orientation in an electrolyte solution with zero to moderately high ionic strength. The formulation
is equally applicable to the case of a single solute in an electrolyte. A number of Monte Carlo simulations of protein-like
solutes in NaCl at various concentrations have been performed and demonstrates the method’s usefulness to estimate the
electrostatic contribution to the potential of mean force between two biomolecules in an electrolyte.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Electrostatic interactions play a dominant role in most, if not all, biological processes involving proteins
and other biomolecules. Because of their long ranged character, special care must be taken to ensure an accu-
rate calculation [1]. Methods based upon continuum electrostatics (that is, without atomic detail) are very
popular [2,3] and have found widespread application. They have been employed for, among other things,
the calculation of protein ligand affinities [4,5], the prediction of acid dissociation constants [6,7], an investi-
gation of the effects of point mutations in proteins [8], the computation of solvation free energies of small mol-
ecules [9], and the prediction of protein stability [10]. Continuum electrostatics was also combined with
quantum chemistry approaches to account for solvent effects [11,12]. One reason for the popularity and
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success of continuum electrostatics is that these methods include the important effect of polarization due to
differences in the dielectric properties of the protein and the surrounding solvent [13]. This type of polarization
is still commonly ignored in, for instance, classical force fields for biomolecular simulation.

There exists a wide variety of calculation methods that rely upon continuum electrostatics. Among these,
the most popular relies on the Poisson–Boltzmann (PB) equation and the finite difference method. This
method maps a given protein/solvent system onto a three dimensional grid and the PB equation is solved
at the grid points. Subsequently, the total electrostatic energy of the system is obtained [1,14,15]. The
boundary element method (BEM), the main topic of this work, offers an attractive alternative because of
its higher intrinsic accuracy. The method starts from the same set of differential equations to describe a pro-
tein/solvent system, but converts this into a set of integral equations valid on a surface or a dielectric
boundary enclosing the protein of interest [16,17]. Discretization of these integral equations results in a
matrix equation, the solution of which, under conditions of non-zero ionic strength, corresponds to the total
electrostatic potential and the normal component of the total electrostatic field on the boundary [17,18].
Subsequently, the total electrostatic potential and the total electrostatic field can be computed in the protein
or solvent region by a simple numerical integration across the boundary. The electrostatic energy is then
easily obtained from the total potential and, consequently, the electrostatic forces are readily available
[19]. The BEM cleanly separates in a natural way the reaction potential from the direct Coulombic terms,
the latter being calculated in an exact manner, so that any numerical error in the total potential and field
solely arises from the computation of the reaction potential and field. It should be noted that Zhou et al.
[20] have introduced a finite difference formulation that also completely eliminates the need to compute the
self-energy term. In addition, recent developments such as adaptive finite element methods [21–23] and
focused finite differencing [24] have greatly improved the accuracy of traditional finite difference and finite
element methods as well.

In recent years, the BEM has been used, among other things, to compute solvation free energies of small
molecules [9], to study protein folding [25], to predict acid-dissociation constants in proteins [7], to compute
the affinity of a protein for a charged surface carrying an uniform charge density [26], to estimate the inter-
action energy and forces between two or more proteins [27–30,33], to calculate the affinities of peptides for
proteins [5], to consider the electrostatic recognition between enzyme and inhibitor [31], to describe solvent
effects in quantum chemistry approaches [11], and to include electrostatic interactions in the framework of
the generalized Langevin equation [32,33].

In this work, the main objective is to introduce a novel formulation of the boundary element method. We
present here a formulation that describes ionic strength by means of explicit ions. The usage of explicit ions
in the description of biomolecular systems is not a new idea, but the effects of dielectric boundaries in such
formulations have simply been ignored or were deemed irrelevant [34]. All existing BEM implementations
are based upon a full continuum description of the solvent to accommodate ionic strength and rely on the
linear PB equation [17,27,28]. The linear PB equation is valid only at very low ionic strengths. It may be
possible to extend existing BEM formulations by means of the non-linear PB equation, as was already
implemented for the finite difference method [35], but this seems not feasible with a BEM approach,
although a ‘hybrid’ method has been proposed [36,37]. It is rather questionable to rely on the non-linear
PB equation given the fact that only the linear PB is an exact limiting law of statistical mechanical theories
of electrolyte solutions [38]. Any continuum approach to simulate electrolyte solutions ignores ion–ion cor-
relation, which is already significant at concentrations as low as 0.01 M [39]. Also, the concept of electro-
neutrality is not very well defined in pure continuum approaches, while special measures to account for the
ion-exclusion layer may be required as well [37]. The method presented in this work overcomes these lim-
itations through the use of explicit ions and, combined with a Monte Carlo simulation approach (or any
other appropriate simulation method, e.g. Brownian dynamics in reference [40]) to sample ion configura-
tions and protein orientations, can be employed to compute, among other things, the electrostatic contribu-
tion to the potential of mean force between two protein molecules at a given distance and orientation in an
electrolyte solution. The results of a series of test calculations on systems ranging from very simple to real-
istic solute molecules are presented here to demonstrate the quality and the feasibility of the novel BEM
method.

Notice that throughout this paper, SI units are used.
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2. Theory

2.1. Formulation of integral equations

The derivations in this Section follow very similar procedures as in reference [17]. Therefore, only the main
results are given here.

Consider the case of two polarizable regions A and B at a given distance and orientation with respect
to each other, immersed in a polarizable region S. All three regions contain free charges. All regions
behave as linear dielectrics. The dielectric properties of this system are contained in the following set
of equations.
r2F ðr; sÞ ¼ �dðr� sÞ; ð1Þ

F ðr; sÞ ¼ 1

4pjr� sj ; ð2Þ

r2uAðrÞ ¼ �
X

i

qA
i

�0�A

dðr� riÞ; ð3Þ

r2uBðrÞ ¼ �
X

j

qB
j

�0�B

dðr� rjÞ; ð4Þ

r2uSðrÞ ¼ �
X

k

qS
k

�0�S

dðr� rkÞ: ð5Þ
Here, �A, �B and �S are the dielectric constants of A, B and S, respectively, and qA
i , qB

j and qS
k refer to the free

charges of A, B and S, respectively. F(r,s) with singularity in s is the fundamental solution of Eqs. (3)–(5) and
satisfies Eq. (1). The functions uA, uB and uS are the electrostatic potentials in A, B and S, respectively. Eqs.
(3) to (5) correspond to the Poisson equations for these regions. The potential uS in the solvent satisfies reg-
ularity conditions at infinity, i.e. |r|uS(r) and |r|2$uS(r) are bounded for r tending to infinity, so that the set of
Eqs. (1) to (5) results in a unique solution to the problem.

The following boundary conditions apply at r0 on the surface RA of A
uAðr0Þ ¼ uSðr0Þ; ð6Þ
ouAðr0Þ

on0

¼ �S

�A

ouSðr0Þ
on0

; ð7Þ
where ou
on0
¼ ruðr0Þ � n0 is the directional derivative of u at r0 and n0 is the unit normal vector at r0 pointing

outward (into the solvent region). Similarly, at r0 on the surface RB of B, one has
uBðr0Þ ¼ uSðr0Þ; ð8Þ
ouBðr0Þ

on0

¼ �S

�B

ouSðr0Þ
on0

: ð9Þ
This set of Eqs. (1) to (9) could describe two polarizable protein molecules immersed in an electrolyte solu-
tion. The latter is described in the present work as a collection of explicit charges in a background continuum.
Notice that the free charges in S (the ions) are treated in exactly the same way as in regions A and B, that is,
they are considered as point charges. Charge size is imposed, though, through the use of radii so that overlap
between ions, for instance in the course of a simulation, is avoided. In fact this model for the ions corresponds
to the primitive model of electrolytes, a theory known to predict the properties of electrolyte solutions very
well at modest concentrations [39]. The classical Debye–Hückel theory for electrolyte solution expressed
through the familiar linear PB equation, is not required here. The use of explicit ions significantly widens
the applicability range of the present formulation with respect to previous formulations [17,7], which are based
upon the linear PB equation.

Multiplying Eq. (2) with Eq. (3), subtracting uA times Eq. (1), with s 2 A, and applying Green’s second
theorem to region A, one has for the potential at rA

0 in A
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uA rA
0

� �
¼
Z

RA

F r; rA
0

� � ouAðrÞ
on

� uAðrÞ
oF r; rA

0

� �
on

� �
drþ

X
i

qA
i

�0�A

F ri; r
A
0

� �
: ð10Þ
Similarly,
uB rB
0

� �
¼
Z

RB

F r; rB
0

� � ouBðrÞ
on

� uBðrÞ
oF r; rB

0

� �
on

� �
drþ

X
j

qB
j

�0�B

F rj; r
B
0

� �
ð11Þ
and
uS rS
0

� �
¼
Z

RA

�F r; rS
0

� � ouSðrÞ
on

þ uSðrÞ
oF r; rS

0

� �
on

� �
dr

þ
Z

RB

�F r; rS
0

� � ouSðrÞ
on

þ uSðrÞ
oF r; rS

0

� �
on

� �
drþ

X
k

qS
k

�0�S

F rk; r
S
0

� �
: ð12Þ
Here, the normal vector n at r on the surface of A or B always points into the solvent region.
We now express, the potentials in A, B and S as a function of the potentials uA(r) on RA and uB(r) on RB

only, so that our first objective is to remove any reference to the directional derivatives ouA

on and ouB

on on the
surfaces RA and RB.

From Eqs. (1), (2) and (5), with s 2 A, and applying once more Green’s second theorem to S, it is found
that
Z
RA

F r; rA
0

� � ouS r; rA
0

� �
on

� uSðrÞ
oF ðr; rA

0 Þ
on

� �
drþ

Z
RB

F r; rA
0

� � ouS r; rA
0

� �
on

� uSðrÞ
oF r; rA

0

� �
on

� �
dr

�
X

k

qS
k

�0�S

F rk; r
A
0

� �
¼ 0: ð13Þ
Subtracting �S
�A

times Eq. (13) from Eq. (10) and using the boundary conditions, the electrostatic potential in A
becomes
uA rA
0

� �
¼ �S

�A

� 1

� �Z
RA

oF r; rA
0

� �
on

uAðrÞdr� �S

�A

Z
RB

F r; rA
0

� � �B

�S

ouBðrÞ
on

� uBðrÞ
oF r; rA

0

� �
on

� �
dr

þ
X

i

qA
i

�0�A

F ri; r
A
0

� �
þ �S

�A

X
k

qS
k

�0�S

F rk; r
A
0

� �
: ð14Þ
From Eqs. (1), (2) and (4), with s 2 A, and applying Green’s second theorem to B, it is found that
Z
RB

F r; rA
0

� � ouBðrÞ
on

� uBðrÞ
oF r; rA

0

� �
on

� �
drþ

X
j

qB
j

�0�B

F rj; r
A
0

� �
¼ 0: ð15Þ
Adding �B�S
�S�A

times Eq. (15) to (14), the desired result is obtained.
uA rA
0

� �
¼ �S

�A

� 1

� �Z
RA

oF r; rA
0

� �
on

uAðrÞdrþ �S

�A

� �B

�A

� �Z
RB

oF r; rA
0

� �
on

uBðrÞdrþ
X

i

qA
i

�0�A

F ri; r
A
0

� �

þ �B�S

�S�A

X
j

qB
j

�0�B

F rj; r
A
0

� �
þ �S

�A

X
k

qS
k

�0�S

F rk; r
A
0

� �
: ð16Þ
Notice that if there is no molecule B and the solvent is charge free with zero ionic strength, this equation
becomes identical to Eq. (2.25) in reference [17]. The potential in A is seen to have a contribution from all
charges (the summation terms) and a contribution from the boundaries (the surface integrals).

If the same procedure is repeated but now with molecule B instead of Eq. (16), one has for the potential in B
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uB rB
0

� �
¼ �S

�B

� 1

� �Z
RB

oF r; rB
0

� �
on

uBðrÞdrþ �S

�B

� �A

�B

� �Z
RA

oF r; rB
0

� �
on

uAðrÞdrþ �A�S

�S�B

X
i

qA
i

�0�A

F ri; r
B
0

� �

þ
X

j

qB
j

�0�B

F rj; r
B
0

� �
þ �S

�B

X
k

qS
k

�0�S

F rk; r
B
0

� �
: ð17Þ
From Eqs. (1)–(3), with s 2 S, one can derive in the same way, for region A
Z
RA

F r; rS
0

� � ouAðrÞ
on

� uAðrÞ
oF r; rS

0

� �
on

� �
drþ

X
i

qA
i

�0�A

F ri; r
S
0

� �
¼ 0 ð18Þ
and also, from Eqs. (4), (1) and (2), with s 2 S, for region B
Z
RB

F r; rS
0

� � ouBðrÞ
on

� uBðrÞ
oF r; rS

0

� �
on

� �
drþ

X
j

qB
j

�0�B

F rj; r
S
0

� �
¼ 0: ð19Þ
Adding �A
�S

times Eq. (18) and �B

�S
times Eqs. (19) to (12), one obtains for the electrostatic potential in S
uS rS
0

� �
¼ 1� �A

�S

� �Z
RA

oF r; rS
0

� �
on

uAðrÞdrþ 1� �B

�S

� �Z
RB

oF r; rS
0

� �
on

uBðrÞdrþ �A

�S

X
i

qA
i

�0�A

F rj; r
S
0

� �

þ �B

�S

X
j

qB
j

�0�B

F ri; r
S
0

� �
þ
X

k

qS
k

�0�S

F rk; r
S
0

� �
: ð20Þ
Notice that if the solvent is charge free with zero ionic strength and there is just one molecule (A or B) in the
solvent S, Eq. (20) becomes identical to Eq. (2.26) in reference [17].

Eqs. (16), (17) and (20) demonstrate that the electrostatic potential in any point can be expressed as a func-
tion of just two unknowns, uA on RA and uB on RB. We now seek two integral equations for uA and uB valid
on RA and RB.

Taking the limits rA
0 ! RA and rB

0 ! RB in Eqs. (10) and (11), it is found that
1

2
uAðr0Þ ¼

Z
RA

F ðr; r0Þ
ouAðrÞ

on
� uAðrÞ

oF ðr; r0Þ
on

� �
drþ

X
i

qA
i

�0�A

F ri; r0ð Þ: ð21Þ

1

2
uBðr0Þ ¼

Z
RB

F ðr; r0Þ
ouBðrÞ

on
� uBðrÞ

oF r; r0ð Þ
on

� �
drþ

X
j

qB
j

�0�B

F ðrj; r0Þ; ð22Þ
where r0 2
P

A in Eq. (21) and r0 2
P

B in Eq. (22).
Taking the limit rS

0 ! RA in Eq. (12) gives
1

2
uSðr0Þ ¼

Z
RA

�F ðr; r0Þ
ouSðrÞ

on
þ uSðrÞ

oF ðr; r0Þ
on

� �
dr

þ
Z

RB

�F ðr; r0Þ
ouSðrÞ

on
þ uSðrÞ

oF ðr; r0Þ
on

� �
drþ

X
k

qS
k

�0�S

F ðrk; r0Þ; ð23Þ
where r0 2 RA. Adding Eq. (21) and �S

�A
times Eq. (23) and using the boundary conditions, it follows for the

potential uA(r0) on RA that
1

2
1þ �S

�A

� �
uAðr0Þ ¼

�S

�A

� 1

� �Z
RA

oF ðr; r0Þ
on

uAðrÞdrþ �S

�A

Z
RB

�F ðr; r0Þ
�B

�S

ouBðrÞ
on

þ uBðrÞ
oF ðr; r0Þ

on

� �
dr

þ
X

i

qA
i

�0�A

F ðri; r0Þ þ
�S

�A

X
k

qS
k

�0�S

F ðrk; r0Þ: ð24Þ
Finally, taking the limit rA
0 ! RA in Eq. (15), multiplying the result with �B�S

�S�A
and adding this to Eq. (24),

gives
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1

2
1þ �S

�A

� �
uAðr0Þ ¼

�S

�A

� 1

� �Z
RA

oF ðr; r0Þ
on

uAðrÞdrþ �S

�A

� �B

�A

� �Z
RB

oF ðr; r0Þ
on

uBðrÞdr

þ
X

i

qA
i

�0�A

F ðri; r0Þ þ
�B�S

�S�A

X
j

qB
j

�0�B

F ðrj; r0Þ þ
�S

�A

X
k

qS
k

�0�S

F ðrk; r0Þ: ð25Þ
Notice that if the solvent S is charge free and there is no molecule B, this equation becomes identical to Eq.
(2.24) in reference [17].

Following similar steps, one finds that
1

2
1þ �S

�B

� �
uBðr0Þ ¼

�S

�B

� 1

� �Z
RB

oF ðr; r0Þ
on

uBðrÞdrþ �S

�B

� �A

�B

� �Z
RA

oF ðr; r0Þ
on

uAðrÞdr

þ �A�S

�S�B

X
i

qA
i

�0�A

F ðri; r0Þ þ
X

j

qB
j

�0�B

F ðrj; r0Þ þ
�S

�B

X
k

qS
k

�0�S

F ðrk; r0Þ: ð26Þ
Eqs. (25) and (26) represent a pair of integral equations for uA and uB valid on the surfaces RA and RB.
Notice that, from Eqs. (25, 26), if �A = �B = �S = �, both the potential on A and B correspond to the regular

Coulomb potential, but screened by a factor �, as expected.

2.2. Electrostatic energy

The total electrostatic energy of a system consisting of two molecules A and B in a electrolyte solution with
explicit ions is given from
W el ¼
1

2

X
l

qluðrlÞ ¼
1

2

X
i

qA
i uAðriÞ þ

1

2

X
j

qB
j uBðrjÞ þ

1

2

X
k

qS
kuSðrkÞ ¼ W ðqÞ

el þ W ðbÞ
el ; ð27Þ
where ql is one of the charges in the system and u(rl) is the total potential at the charge location rl. The total
electrostatic potential is determined from Eqs. (16), (17) and (20) and includes the effects of mutual polariza-
tion between the different regions in the system. Eq. (27) is appropriate for linear dielectric media [13]. The
total potential u(r) has a contribution u(q)(r) from all charges and a contribution u(b)(r) from the boundaries,
so that the total electrostatic energy is the sum of a contribution W ðqÞ

el due to interactions between all charges,
represented by the summation terms of Eqs. (16), (17) and (20), and a contribution W ðbÞ

el due to interactions of
charges with the boundaries, represented by the integrals terms of Eqs. (16), (17) and (20). The calculation of
W ðbÞ

el generally involves a numerical integration over the boundaries [17,7].

W ðqÞ
el corresponds to Coulomb-like interactions according to
W ðqÞ
el ¼

1

2�A

X
p;i

qA
p qA

i

�0jri � rpj
þ 1

2�A

X
p;j

qA
p qB

j

�0jrj � rpj
þ 1

2�A

X
p;k

qA
p qS

k

�0jrk � rpj
þ 1

2�B

X
q;i

qB
q qA

i

�0jri � rqj
þ 1

2�B

X
q;j

qB
q qB

j

�0jrj � rqj

þ 1

2�B

X
q;k

qB
q qS

k

�0jrk � rqj
þ 1

2�S

X
r;i

qS
r qA

i

�0jri � rrj
þ 1

2�S

X
r;j

qS
r qB

j

�0jrj � rrj
þ 1

2�S

X
r;k

qS
r qS

k

�0jrk � rrj
: ð28Þ
It is seen that the cross-terms (direct interaction between charges in different regions) do not symmetrically
contribute to the total electrostatic energy, because of different prefactors 1

�A
, 1
�B

and 1
�S

. The terms on the diag-

onal (interactions between charges in the same region) can be converted according to 1
2

P
n

P
m ¼

P
n<m and are

the conventional intramolecular (intrasolvent) interactions that also appear (except for the intrasolvent part)
in the case of a single solute in a solvent without free charges [17,16]. Both u(q) and W ðqÞ

el can be computed by
standard means.

2.3. Numerical solution of integral equations

Generally, the integral equations must be solved by numerical means. In this work, we employ a solution
based upon the boundary element method (BEM). First the integral Eqs. (25), (26) are rewritten as
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�S þ �A

2
uAðsÞ ¼ �S � �Að Þ

Z
RA

oF ðr; sÞ
on

uAðrÞdrþ ð�S � �BÞ
Z

RB

oF ðr; sÞ
on

uBðrÞdrþ
X

i

qi

�0

F ðri; sÞ; ð29Þ

�S þ �B

2
uBðtÞ ¼ ð�S � �BÞ

Z
RA

oF ðr; tÞ
on

uAðrÞdrþ ð�S � �AÞ
Z

RB

oF ðr; tÞ
on

uAðrÞdrþ
X

i

qi

�0

F ri; tð Þ; ð30Þ
where the summation terms are over all charges of the solutes/solvent system and correspond to the Coulomb
potential on the surfaces.

Following a notation similar to that in references [7,16,17], Eqs. (29, 30) are written as a single matrix equa-
tion (see Appendix A for some of the details)
ðcTI� SÞx ¼ b: ð31Þ

Here, the vector x of length n, where n is the number of collocation points on the boundaries, contains the
unknown functions (�S � �A)uA and (�S � �B)uB. I is a diagonal matrix, the vector c depends on values of
the dielectric constants, S corresponds to the kernels of the form oF ðr;sÞ

on in the integral equations, and the vector
b corresponds to the source terms in Eqs. (29, 30). The exact form of the matrix elements of S depend on the
details of the discretization or collocation method employed and the geometry of the boundaries, but not on
the values of the dielectric constants. Eq. (31) can be solved for x with LU-decomposition techniques [41] or
iterative procedures [42]. This work relies upon the LU-decomposition method.

The solution vector x is employed to numerically integrate over the boundaries to calculate the contribution
W ðbÞ

el to the electrostatic energy The integrals can be calculated along similar lines as the matrix elements of the
matrix S are obtained (Appendix A). For instance, for the surface integrals of Eq. (16), it is found that [7]
UðbÞ ¼ 1

�A

Zx; ð32Þ
where the matrix Z represents the kernels of the form oF ðr;sÞ
on in the surface integrals of Eq. (16) – see also Eqs.

(55–59) in the Appendix. The vector U(b) holds the contribution to the total potential due to the boundaries.
The length of this vector is the number of points m in A where the potential uðbÞA is to be calculated, so that Z

has dimensions m · n. The matrix Z depends on the positions of the charges inside A, the details of the col-
location method, and the geometry of the boundaries.

2.4. Monte Carlo simulation

The above formulation gives the total electrostatic energy for a given configuration of one or two solutes in
an electrolyte. In this work, this formulation is employed in Monte Carlo simulations of solutes in NaCl with
concentrations ranging from 0.05 to 0.15 M, the latter being the salt concentration under physiological con-
ditions. The simulations were performed in the canonical ensemble with importance sampling [43]. A trial
move of a ion consisted of placing it at a random position somewhere in the box. A trial move of a solute
molecule consisted of a random translation followed by a random rotation, where the rotation matrix is com-
puted from a quaternion formalism [44,45]. The energy difference is subsequently evaluated to test if the new
configuration is representative for the system. The Monte Carlo energy includes a hard-sphere potential to
avoid overlap between solute atoms and ions. Internal degrees of freedom for the solutes were ignored and,
consequently, solute molecules act like rigid bodies. The temperature of the system was always 298 K, the
dielectric constant of the solutes was always 4, and the dielectric constant of the solvent was always 80.
The box dimensions were chosen such that at 0.15 M NaCl the distance between the solutes’ surfaces and
the edge of the box was at least 6.0 nm, resulting in several 100 of ions at 0.15 M. The box size was increased
to simulate at lower ionic strength so as to avoid a difference in sampling frequencies. The simulations rely on
periodic boundary conditions (PBC) with the nearest image approximation (NIA) [43]. The PBC + NIA
approach is appropriate for simulations of electrolytes based upon the primitive model. The charge distribu-
tion of the solute was constant (that is, pH effects were not accounted for).

One test system was concerned with a very simple case of two spherical objects, each carrying a physical
dipole parallel to the z-axis. The dipole was constructed from two charges of values �2 and +2 placed at a
distance of 1 nm with respect to each other inside a sphere with a radius of 1 nm. The negative charge was



Fig. 1. Structure of the peptide sandostatin. This molecule consists of eight residues (Phe-Cys-Phe-Trp-Lys-Thr-Cys-Thr) and carries an
overall positive charge of +1. A structure of the peptide was obtained from the PDB entry 1soc [54] and its charge distribution was
obtained from the Gromacs force field [55]. There exists an disulphide bridge between the two Cys residues. The figure was obtained with
visual molecular dynamics [56].
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placed on the negative side of the z-axis. The distance between the spheres’ centers of mass was 2.5 nm and was
kept unchanged, while also the orientation of the spheres was fixed. The box size for this simulation was
almost 21 nm and there were 812 ions in the system.

Three simulations of two peptides in 0.05, 0.10 and 0.15 M NaCl, respectively, were carried out as well. The
peptide corresponded to sandostatin (a somatostatin analogue), a peptide hormone that we have used before
[34,46]. This molecule consists of eight residues and carries an overall positive charge (some more details are
given in the caption to Fig. 1). As indicated above, the total number of ions in these simulations was always
the same (846), but the box size was appropriately adapted to obtain the required ionic strength (about 21, 24
and 30 nm for 0.15, 0.10 and 0.05 M NaCl, respectively). The two peptides were initially placed at a distance of
3 nm but otherwise were free to explore the whole of the box through rigid body motion (rotation and trans-
lation). Each simulation took about 10,000,000 steps. The peptide’s triangulated surfaces were obtained as
described in reference [47]. The matrix S is updated and consequently the LU-decomposition is carried out
when the orientation of one of the solutes changes with respect to the other during a Monte Carlo step.
The LU-decomposed matrix of the previous step is restored if the new state is not accepted.

3. Results

The quality of the boundary element method was considered by performing a simple test calculation on two
spherical objects A and B, each containing a single charge qA and qB located at the center of a sphere with a
radius of 1 nm. Fig. 2 displays the interaction energy with qA = +1 and qB = �1 in an solvent with zero ionic
strength, as a function of the number of triangles of the spherical surfaces. The interaction energy Wel, int at a
given distance between the charges was computed simply as Wel, int(A,B) = Wel(A,B) �Wel(A) �Wel(B), that
is, as the difference of the total electrostatic energy of the combined system (A,B) and the sum of the total
electrostatic energy of the individual systems (A and B). It is seen that with an increasing number of triangles,
the numerical result quickly approaches the exact value. While this work does not present the best possible
approach to numerically solve the integral equations, it appears to be of sufficient accuracy for the scope
of this paper.

Fig. 3(a) shows the density (the ratio of the actual number density in parallel slabs and the bulk density, that
is) of ions in the simulation box containing two spherical objects, each with a physical dipole parallel to the
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Fig. 2. Electrostatic interaction between two spherical objects (each with a radius of 1.0 nm), each containing a single charge (+1 and �1,
respectively). The ionic strength is zero. The calculation is performed for an increasing number of boundary elements or triangles, ranging
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implementation based upon reference [57], as kindly provided by Dr. Xueyu Song (Department of Chemistry, Iowa State University,
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Fig. 3. Density of ions (Na+ and Cl�) throughout the simulation box parallel to the z-direction for the case of two physical dipoles, each
inside a sphere with a radius of 1 nm. Each dipole was constructed from two charges with charge values �2 and +2 placed at a distance of
1 nm with respect to each other and placed on the negative and positive z-axis, respectively. The distance between the centers of the spheres
was 2.5 nm. The graph displays the ratio of the density in slabs perpendicular to the z-axis and the bulk number density. The width of a
slab in the z-direction was 0.1 nm, while the width of the slab perpendicular to the z-axis was 3.0 nm. If the latter had taken the full width
of the simulation box, the inhomogeneity in the density would have been more difficult to observe. The relatively small size of the sphere
with respect to the box sizes would have obscured the inhomogeneity of the density and the calculation would not have been sensitive
enough to see the effects. This calculation method renders the graph noisier though.
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z-axis. It is observed that, close to the spheres, there exists an inhomogeneity in the density, which is obviously
due to the asymmetric charge distribution of the two spheres. On the negative z-axis there is an accumulation
of positive ions (Na+), while on the positive side, one observes the opposite, as one would expect. Since there is
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Fig. 4. Density of ions throughout the simulation box parallel to the x-direction for the case of two peptides (sandostatin) in a box. The
box size was about 21 nm. The density is calculated in a similar manner as for Fig. 3.
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Fig. 5. As Fig. 4, but now the ionic strength is 0.10 M NaCl. The box size was about 24 nm.
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space between the two spheres (0.5 nm), ions can enter that region and there appears to be an higher proba-
bility to observe a negative ion than a positive ion in that region. Towards the edges of the box, the density
approaches the bulk value (the ratio of the actual number density in slabs and bulk density approaches 1). Due
to the hard-sphere potential between the ions and spheres, ions were not allowed to enter the region inside the
spheres.

We also performed a number of Monte Carlo simulations of a system consisting of two peptides. Figs. 4–6
show the distribution of ions throughout the box for these simulations. Since the peptides carry an overall
positive charge, there is a tendency of negative Cl� ions to occupy the regions around the peptides. It is
observed that the density of Cl�(Na+) ions with respect to the bulk density in between the two peptides is
increasing (decreasing) with decreasing ionic strength. Further away from the peptides, towards the box edges,
the ion density reaches the bulk value, as it should. The peptides are free to roam the entire simulation box and
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Fig. 6. As Fig. 4, but now the ionic strength is 0.05 M NaCl. The box size was about 30 nm.
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Fig. 7. The radial distribution function g(r) of ions around the peptides at 0.15 M NaCl.
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from the Figures, it is observed that they occupy mostly the region between about �5 to +10 nm. Much longer
simulations would better cover the rest of the box, though.

Figs. 7–9 display the radial distribution function g(r) of ions with respect to the centers of mass of the pep-
tides, averaged over the orientations of the peptides (an analysis of the orientation of the peptides with respect
to each other over the full course of the simulation indicated no particular preference). With decreasing ionic
strength, the spatial correlation between the positive peptides and the ions is longer ranged, but disappears at a
distance of 8 to 10 nm. This is in correspondence with Figs. 4–6 and indicates that the number density of ions
approaches the bulk value beyond, say, 10 nm on either side of the middle of the box. Note also that Figs. 7–9
possibly indicate a degree of penetration of ions into the outer regions of the peptides, as the radius of the
peptides is about 1 nm. The distribution of ions around the peptides in a way follows that of an electric double
layer as is observed at a charged surface [34]. With decreasing ionic strength, a stronger accumulation of Cl�
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Fig. 8. As Fig. 7, but now the ionic strength is 0.10 M NaCl.
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Fig. 9. As Fig. 7, but now the ionic strength is 0.05 M NaCl.
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ions is observed at the surfaces of the peptides at about r = 1 nm. The peptide is, however, far from spherical
(Fig. 1) and it is therefore quite possible that, in one region at the peptide’s surface, the ions are closer to the
peptide’s center of mass than in another region.

Fig. 10 shows the radial distribution function between Na+ and Cl� for the three solute simulations. These
results also suggest an increased spatial correlation at lower ionic strengths due to reduced screening effects. At
the same time, due to a stronger average interaction between the ions, a stronger accumulation of counter
charges is observed at the ion surfaces. Descriptions based upon a full continuum description of electrolytes
do not account for explicit ion–ion correlation.

Finally, in Fig. 11, the frequency plot of the distance between the two peptides is shown. This is a measure
for the potential of mean force. For 0.15 and 0.10 M NaCl, the distances most often visited appear to be in the
range of 6–8 nm. For 0.05 M NaCl there is a considerable degree of sampling of shorter distances, while the
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Fig. 11. A frequency plot of the distance between the sandostatin peptide molecules at 0.15 M, 0.10 M and 0.05 M NaCl.
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system also visits distances beyond 8 nm. Generally, with decreasing ionic strength, the region beyond 8 nm is
more frequently visited, while there also seems to be an increasing tendency to visit shorter distances more
often.

4. Discussion

This work presents a novel formulation to describe ionic strength in a boundary element method scheme for
the calculation of electrostatic interactions in and between proteins. Without exception, current formulations
that include mutual polarization effects and ionic strength depend on a full continuum model limiting their
applicability and validity range. One advantage of the usage of explicit ions is that the present formulation
is not limited at all to 1:1 electrolytes. It is straightforward to apply the approach to asymmetric electrolytes
such as CaCl2, a realm of applications where the standard Poisson–Boltzmann utterly fails [39]. Another
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advantage is concerned with the details of interactions between charged groups of the solute and the solvent,
which in a full continuum description are totally incorrectly described, therefore, interfering with the dynam-
ical properties of these groups.

Many researchers, in the 1980–1990’s, have already commented on the importance of ion–ion correlation in
describing the physical properties of electrolyte solutions [39]. This is probably best reflected in the (mean)
activity coefficient c, which appears in the chemical potential, a free energy. Its dependence on the ionic
strength predicts a straight line according the Debye–Hückel theory (�lnc versus the square root of the ionic
strength), which in fact is not the case at increasingly higher ionic strengths. The predicted dependence is true
only at very low concentrations. Computer simulations using an explicit model of ions in a continuum back-
ground and recent statistical mechanical theories reproduce the correct behaviour of c quite well. Deviations
are expected and are also observed in experiments with concentrations above about 0.01 mol l�1, although
each salt has its own peculiarities. The fact is that methods based upon an explicit treatment of ions describe
the thermodynamical and structural properties of electrolytes better. As it is true that the solvent very much
influences the structural and other properties of a protein [48], one can argue that a pure continuum model for
the solvent is too crude to properly simulate proteins in electrolyte solutions.

The feasibility and the correctness of the present formulation has been demonstrated by a number of test
calculations. A typical outcome for the electrostatic interaction between two proteins in an electrolyte solution
is presented in Fig. 11. Generally, this figure suggests that with decreasing ionic strength, the region beyond
8 nm is more often visited. There also appears to be an increasing tendency to visit more often shorter dis-
tances. The fact that the system visits longer distances is a consequence of reduced screening at lower ionic
strengths, rendering the repulsive interaction stronger due to the overall positive charge of the peptide.
Fig. 1 shows that the molecule is strongly asymmetric. It contains two widely separated positive charges
located on the N-terminus and the Lys residue, and there is a negative charge on the C-terminus of the peptide
positioned in about the same region as the N-terminus. The molecules carry, therefore, a dipole and also
higher order multipoles. At short distances between the two peptides, the details of the charge distribution
and the peptide’s structure will strongly affect the potential of mean force between the molecules. The electro-
static interaction is stronger at lower ionic strengths, resulting in a slightly higher probability of the two mol-
ecules sticking to each other. This is a consequence of the interaction between the dipoles and the other higher
order multipoles of the two molecules, the effects of which are significantly reduced at longer distances where
the monopole term dominates the potential of mean force, pushing them away from each other. At higher
ionic strengths, these interactions are effectively screened; also at the shorter distances. A similar effect was
observed previously [34].

A few practical notes are worth mentioning. While this work relied on the LU-decomposition method to
solve the matrix equation Eq. (31), this method is not practical for large linear algebraic systems due to both
memory and CPU speed limitations. So, for large macromolecular systems, an iterative procedure is usually
employed to solve the matrix equation. The inclusion of ionic strength does not modify the size of the matrix
S. In implementations based upon the linear Poisson–Boltzmann equation, the size of this matrix doubles if
ionic strength is included in the description [17]. This negatively affects both memory requirements and effi-
ciency, if for instance a LU decomposition method is employed to solve the matrix equation. One could object
against the use of explicit ions for reasons of efficiency when compared to pure continuum approaches, since
additional computing time is now spent on the handling of explicit ions through a simulation scheme. On the
other hand, any realistic simulation model should include some degree of flexibility for the solute. In the cur-
rent approach, the number of ions (except for small solutes) is typically less than the number of protein atoms.
Therefore, in any ensemble or dynamical simulation most of the computation time is now concerned with the
energy and forces related the protein atoms, instead of with the solvent. This is to be contrasted with the case
of an all-atom molecular dynamics simulation, where 80–90% of the computation time is concerned with the
solvent. Then again, in the present formulation, it is necessary to regularly update the boundary of the solute
molecules and also the matrix S, because of the changing conformations of the proteins in the course of a sim-
ulation. Obviously this would reduce the efficiency of the method compared to implicit solvation models. The
handling of the surface is not a major obstacle, since a number of very efficient algorithms already exists for
this purpose (a short overview is presented in reference [47]). The calculation of the surface may in fact not be
required at every step of the simulation. In conclusion then, when compared to an application of molecular
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dynamics that relies on an implicit solvent model, the inclusion of explicit ions should not drastically decrease
the efficiency of the simulation method and is certainly more efficient than an all atom model.

The Monte Carlo simulations rely on the simple PBC + NIA approximation (there are no cut-off distances
in this scheme) to compute the direct screened Coulomb interaction between charges (Eq. (28)) and to calculate
the right-hand side of the matrix equation (Eq. (31)). The results indicate that towards the edges of the sim-
ulation box, the ion densities reach bulk values. One can conclude that there are no major artificial effects
interfering with the properties of the system. It should be possible and is probably necessary to extend this
scheme to more sophisticated methodologies. Standard approaches, such as the Ewald [49] and the Lekner
[50] summation techniques and methods based upon these approaches, may be not be immediately appropri-
ate, since these methods do not accommodate mutual polarization effects. On the other hand, the terms in Eqs.
(28) and (31) depend on a (screened) 1/r term, so it seems likely that aforementioned summation methods
could possibly be used in their current form. However, a detailed analysis should be performed to assert
the correctness of this statement. The analysis could lead to a new boundary condition model in the frame-
work of the present formulation. In particular, it should be noted that the neutrality of the system in this
method may not be fully guaranteed due to polarized charges. Also the treatment of the normal derivative
of the fundamental solution in Eqs. ((29),(30)) might not be so straightforward, despite the fact that Eq. (28)
just contains an 1/r term. The issue of calculating electrostatic forces in a BEM framework was also addressed
in detail by Lu et al. [29,30,33]. It should be noted that in a dynamical simulation that relies on dielectric
boundaries and explicit ions, such as in this work, if ions enter a low dielectric region the energy may suffer
from large fluctuations, which will also affect the forces.

It is expected that the present formulation will be most suitable when employed in coarse-grained simula-
tion models, where the number of degrees of freedom has been considerably reduced to be able to reach longer
time scales and simulate at larger length scales than is currently possible with, for instance, molecular dynam-
ics simulation [51]. Typically, boundary models of this type tend to describe the protein at the atomic level and
consider the solvent as a continuum without ionic strength, leading to a model with different levels of descrip-
tion for the protein and the solvent (for instance see references [52,53]). A truly consistent coarse-grained sim-
ulation model should describe both the solute and the solvent at a similar level. For example a protein could be
described as a collection of connected larger units, each unit describing for instance a portion of a side chain.
These units are collectively moving in an electrolyte solution and are separated from the solvent by an adjust-
able dielectric boundary to accommodate for mutual polarization effects, as in the present work.

5. Conclusions

A novel boundary element method has been introduced which can be applied to the case of one solute in an
electrolyte solution as well as to the case of two solute molecules at a given distance and orientation. The pres-
ent work introduces, for the first time, explicit ions in a BEM formulation to describe the solvent as an elec-
trolyte, which significantly increases the validity of the method. The resulting equations can be readily
specialized to a case of a single solute in a charge-free solvent, which are then identical to those in reference
[17]. The feasibility of the present method was demonstrated by computing, among other things, a measure for
the potential of mean force between two solutes by means of a Monte Carlo simulation. Finally, the size of the
system matrix is the same whether or not ionic strength is included, in contrast to pure continuum approaches.
The method can easily be incorporated into existing simulation schemes, is not limited to 1:1 electrolytes, and
is suitable for coarse-grained simulation models.
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Appendix A. Matrix-vector formulation

To handle the integral equations (29), (30) numerically, various schemes have been proposed. A very simple
approach is followed here. The equations are seen to be of the type
CAf ðsÞ ¼
Z

RA

Kðr; sÞf ðrÞdrþ
Z

RB

Kðr; sÞgðrÞdrþ QðsÞ; ð33Þ

CBgðtÞ ¼
Z

RA

Kðr; tÞgðrÞdrþ
Z

RB

Kðr; tÞf ðrÞdrþ QðtÞ; ð34Þ
where f(r) = (�S � �A)uA(r) and f(r) = (�S � �B)uB(r) with r 2 RA and r 2 RB. The source terms in Eqs. (29) and
(30) are represented by the Coulomb potential Q(s) = Riqi/�0F(r,s), where the sum is over all charges. The con-
stants are CA = (�S + �A)/[2(�S � �A)] and CB = (�S + �B)/[2(�S � �B)] and the kernel Kðr; sÞ ¼ oF ðr;sÞ

on .
To proceed, the functions f and g are discretized on so-called collocation points, according to
f ðrÞ ¼
X

i

wiðri; rÞfi; ð35Þ

gðrÞ ¼
X

j

wjðrj; rÞgj: ð36Þ
Here, ri and rj refer to the collocation points on the boundary of A and B, respectively, and fi = fi(ri) and
gj = gj(rj) are the values of f(r) and g(r) at ri and rj, respectively. The functions w(rk,r) are functions defined
only on the boundaries. With Eqs. (35), (36), Eqs. (33), (34) become
CA

X
k

wkðrk; sÞfk ¼
X

i

fi

Z
RA

Kðr; sÞwiðri; rÞdrþ
X

j

gj

Z
RB

Kðr; sÞwjðrj; rÞdrþ QðsÞ ð37Þ

CB

X
l

wlðrl; tÞgl ¼
X

i

gi

Z
RA

Kðr; tÞwiðri; rÞdrþ
X

j

fj

Z
RB

Kðr; tÞwjðrj; rÞdrþ QðtÞ: ð38Þ
Multiplying Eq. (37) from the left with wm(rm,s) with rm, s 2 RA and integrating over RA, it is found thatZ Z Z

CA

X
k

fk
RA

wkðrk; sÞwmðrm; sÞdrs ¼
X

i

fi
RA RA

Kðr; sÞwiðri; rÞwmðrm; sÞdrdrs

þ
X

j

gj

Z
RA

Z
RB

Kðr; sÞwjðrj; rÞwmðrm; sÞdrdrs þ
Z

RA

QðsÞwmðrm; sÞdrs:

ð39Þ

Similarly, multiplying Eq. (38) from the left wn(rn,t) with rn, t 2 RB and integrating over RB, it is found that
CB

X
l

gl

Z
RB

wlðrl; tÞwnðrn; tÞdrt ¼
X

i

gi

Z
RB

Z
RA

Kðr; tÞwiðri; rÞwnðrn; tÞdrdrt

þ
X

j

fj

Z
RB

Z
RB

Kðr; tÞwjðrj; rÞwnðrn; tÞdrrt þ
Z

RB

QðtÞwnðrn; tÞdrt:

ð40Þ

In a matrix-vector notation, Eqs. (39), (40) are written as
CA

X
k

U mkfk �
X

i

Kmifi �
X

j

Lmjgj ¼ P m; ð41Þ

CB

X
l

V nlgl �
X

i

Mnigi �
X

j

N njfj ¼ Qn; ð42Þ
where
Uij ¼
Z

RA

wjðrj; sÞwiðri; sÞdrs; ð43Þ
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V ij ¼
Z

RB

wjðrj; tÞwiðri; tÞdrt; ð44Þ

Kij ¼
Z

RA

Z
RA

Kðr; sÞwjðrj; rÞwiðri; sÞdrdrs; ð45Þ

Lij ¼
Z

RA

Z
RB

Kðr; sÞwjðrj; rÞwiðri; sÞdrdrs; ð46Þ

Mij ¼
Z

RB

Z
RA

Kðr; tÞwjðrj; rÞwiðri; tÞdrdrt; ð47Þ

N ij ¼
Z

RB

Z
RB

Kðr; tÞwjðrj; rÞwiðri; tÞdrrt; ð48Þ

P i ¼
Z

RA

QðrÞwiðri; rÞdr; ð49Þ

Qi ¼
Z

RB

QðrÞwiðri; rÞdr: ð50Þ
Matrices U and V are termed ‘overlap’ matrices.
To proceed further, the surface is divided into boundary elements, so that

R
R ¼

P
k

R
Rk

becomes a sum of
integrals over boundary elements. Also, we let a collocation point ri correspond to the center of boundary ele-
ment Ri. Finally, if we let wi(ri, r) be of the form
wðri; rÞ ¼ 1
Di

ri 2 Ri;

¼ 0 ri 62 Ri;
ð51Þ
where Di is the total area of element i, Lij becomes
Lij ¼
1

DiDj

Z
RðAÞi

drs

Z
RðBÞj

drKðr; sÞ; ð52Þ
where the superscripts (A) in RðAÞi and (B) in RðBÞj are to indicate that element i and j belong to the boundary of
A and B, respectively.

Eq. (51) corresponds to assuming that the unknowns f(r) and g(r) are constant over each boundary element
and are given as the average of the values of f and g over the boundary element. Eq. (52) can easily be com-
puted by numerical means to a desired accuracy [16]. Some care must be taken when i and j both refer to the
same boundary element [17] (in Kij and Nij). Eqs. (43), (44) and (46–50) can be treated in a similar fashion as
Lij. Also Eqs. (16), (17) and (20) can be computed along similar lines. For instance, Pi becomes
P i ¼
1

Di

Z
RðAÞi

drQðrÞ;
where the integration is over boundary element i located on the boundary of A. Note that Uij (and Vij)
becomes
Uij ¼ D�1
i if i ¼ j;

0 if i 6¼ j:
ð53Þ
The matrix Eqs. (41, 42) can be combined into a single matrix equation
ðcTI� SÞx ¼ b: ð54Þ

If n = nA + nB is the total number of collocation points (boundary elements), then the vector x of length n
represents the unknowns fi = xi (i = 1,nA) and gj ¼ xnAþj (j = 1,nB) and the right-hand-side b of length n rep-
resents the source terms Pi and Qi in Eqs. ((33), (34)). I is a diagonal matrix carrying the matrix elements Uii

and Vjj and c is a vector for which ci = CA for i = 1,nA and ci = CB for i = nA + 1, nA + nB. The superscript T
refers to the transpose of c. S contains the kernels K, L, M and N. Eq. (54) can be solved for a by means of LU
decomposition methods [41] or iterative procedures [42]. This work relies on the LU-decomposition method.
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After the solution of the matrix Eq. (54) is obtained, it is required to integrate over the boundaries of A and B
to obtain the potential due to the boundaries, Eqs. (16), (17) and (20). For instance, with the collocation meth-
od presented in this Appendix, the contribution uðbÞA ðrA

k Þ at rk to the total potential uAðrA
k Þ arising from the

surface integrals in Eq. (16) becomes
uðbÞA ðrA
k Þ ¼

1

�A

X
i

fi

Di

Z
RðAÞi

Kðr; rkÞdrþ 1

�A

X
j

gj

Dj

Z
RðBÞk

Kðr; rkÞdr ð55Þ
or, as a matrix-vector equation,
uðbÞA;k ¼
1

�A

X
i

X kifi þ
1

�A

X
j

Y kjgj ð56Þ
with
X ij ¼
1

Dj

Z
RðAÞj

Kðr; riÞdr ð57Þ
and
Y ij ¼
1

Dj

Z
RðBÞj

Kðr; riÞdr: ð58Þ
These equations can be combined into a single equation of the form
UðbÞ ¼ 1

�A

Zx; ð59Þ
where the matrix Z now contains both X and Y. Almost identical equations but with a different prefactor (��1
A )

can be derived for the surface integrals of Eqs. (17) and (20).
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